USN

Sixth Semester B.E. Degree Examination, Dec.2013/Jan.2014

Digital Communication

Time: 3 hrs.

Max. Marks 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. With a block diagram, explain the generation and reconstruction of quadrature sampling of band pass signal. (08 Marks)
 - b. The signal $g(t) = 4\cos(4\pi t)\cos(400\pi t)$ is sampled at the rate of 500 sample/sec.
 - i) Determine the spectrum of the resulting sampled signal.
 - ii) What is the Nyggist rate for g(t)?
 - iii) What is the cut-off frequency of ideal reconstruction filter?

(08 Marks)

c. List the advantages of digital communication over analog communication.

(04 Marks)

- 2 a. Derive an expression for output SNR of the quantizer and show that (SNR)₀ = 1.8 + 6n in decibels if a sinusoidal signal is quantized. (08 Marks)
 - b. For a binary PCM signal, determine L if the compression parameter $\mu = 100$ and the minimum [SNR]_{0,dB} = 45 dB. Determine the [SNR]_{0,dB} with this value of L. (04 Marks)
 - What is the necessity of non-uniform quantization? Explain two compounding methods used in practice.

 (08 Marks)
- 3 a. What is slope overload distortion and granular noise in delta modulation and how it can be reduced? (08 Marks)
 - b. A binary data sequence is 0110011.... Sketch the waveform for the following formats:
 - i) NRZ unipolar
 - ii) RZ polar,
 - iii) NRZ bipolar

(06 Marks)

c. Obtain an expression for power spectral density of NRZ polar waveform.

(06 Marks)

- 4 a. What is ISI? Derive an expression for Nyquist pulse shaping criterion for distortionless baseband binary transmission. (08 Marks)
 - b. Discuss the performance of the data transmission using eye pattern.

- (86)Marks)

. What is the necessity of equalization in digital transmission? What is adaptive equalization?

<u>PART – B</u>

- 5 a. Derive an expression for the average probability of symbol error of coherent binary FSK system. (10 Marks)
 - b. With a block diagram, explain noncoherent differential phase shift keying transmitter and receiver and give that the average probability of error for DPSK is $P_e = \frac{1}{2} exp \left(-\frac{E_b}{N_o} \right)$.

(10 Marks)

10EC/TE61

6 a. Write a short note on Gram-Schmidt orthogonalization.

(06 Marks)

b. Three signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ are as shown in Fig.Q6(b). Apply Gram-Schmidt orthogonalization to obtain orthonormal basis functions for signals. Express the signals $s_1(t)$, $s_2(t)$ and $s_3(t)$ in terms of orthonormal basis functions.

Fig.Q6(b)

(06 Marks)

Х

- c. With accessary illustration, explain the geometric representation of signals for the case when N=2 and M=3. (08 Marks)
- 7 a. Show that the probability of bit error of a matched filter is given by $P_e = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_b}{N_a}}$

(08 Marks)

b. Write a note on correlation receivers.

(08 Marks)

- c. A binary data is transmitted using ASK. Over a AWGN channel at a rate of 2.4 Mbps. The carrier amplitude at the receiver is 1 mV. The noise spectral density $\frac{N_o}{r} = 10^{-15}$ Watt/Hz. Find average probability of error if the detection is coherent (where erfc(5) = 3 × 10⁻⁶).

 (04 Marks)
- 8 a. What is spread spectrum? Explain the principle of direct sequence spread spectrum system.

 (08 Marks
 - b. The direct sequence spread spectrum communication system has following parameters:

Data sequence bit duration, $T_b = 4.095$ ms

Pin chip duration, $T_c = 1 \mu s$

 $\frac{E_b}{N_o} = 10$ for average probability of error less than 10^{-5} .

Calculate processing gain and jamming margin.

(04 Marks)

c. Explain the principle of slow frequency hopping, and list advantages and disadvantages of FH-SS system. (08 Marks)

* * * * *